
3 BASIC OPERATIONS 17

0 1
a/0

2
b/0

3
a/0

Figure 3.1: An example of a simple acceptor with language {aba}, in other words
L(A) = {aba}.

3 Basic Operations

An operation on a transducer (or acceptor) takes one or more transducers as
input and outputs a transducer. You can think of these operations as functions
on graphs. As a reminder, I’ll use uppercase script letters to represent graphs, so
A for example can represent a graph. Functions will be denoted by lower case
variables. So f(A) is a function which takes as input a single graph and outputs a
graph.

3.1 Closure

The closure, sometimes called the Kleene star, is a unary function (takes a single
input) which can operate on either an acceptor or transducer. If the sequence x
is accepted by A, then zero or more copies of x are accepted by the closure of
A. More formally, if the language of an acceptor is L(A), then the language of
the closure of A is {xn | x ∈ L(A), n = 0, 1, . . . , }. The notation xn means x
concatenated n times. So x2 is xx and x0 is the empty string. Usually the closure
of an acceptor is denoted by ∗, as in A∗. This is the same notation used in regular
expressions.

The closure of a graph is easy to construct with the use of ε transitions. The
language of the graph in figure 3.1 is the string aba.

The closure of the graph needs to accept an arbitrary number of copies of aba
including the empty string. To accept the empty string we make the start state
an accept state as well. To accept one or more copies of aba we simply wire up
the old accept states to the new start state with ε transitions.

The closure of the graph in figure 3.1 is shown in figure 3.2.

Example 3.1. You might notice that state 4 in the graph in figure 3.2 is not
necessary. Consider an alternate construction for computing the closure of a graph.
We could have made the state 0 into an accept state and connected state 3 to
state 0 with an ε transition, as in the graph in figure 3.3.

For the graph in figure 3.1, this alternate construction works and requires fewer



3 BASIC OPERATIONS 18

4

0ε/0
1a/0

2
b/0

3

a/0

ε/0

Figure 3.2: The closure A∗ of the graph in figure 3.1. The language of the graph is
{ε, aba, abaaba, . . .}.

0

1a/0 2
b/0

3

a/0

ε/0

Figure 3.3: The closure A∗ of the graph in figure 3.1 using an alternate, simpler
construction which connects the accept state to the original start state with an ε transition.
This construction does not work for every case.

states and arcs. In the general case, this construction turns every start state into
an accept state instead of adding a new start state. Give an example where this
doesn’t work? In other words, give an example where the graph from this modified
construction is not the correct closure of the original graph.

An example for which the alternate construction does not work is shown in the
graph in figure 3.4. The language of the graph is anb (any number of a’s followed
by a b) and the closure is (anb)∗, or any sequence that ends with b.

If we follow the modified construction for the closure, as in the graph in figure 3.5,
then the language would incorrectly include sequences that do not end with b such
as a∗. The graph following the correct construction of the closure is in figure 3.6.

�

0

a/0

1
b/0

Figure 3.4: An acceptor for which the alternate construction for the closure does not
yield the correct result.



3 BASIC OPERATIONS 19

0

a/0

1
b/0

ε/0

Figure 3.5: The alternate construction which incorrectly computes the closure of the
graph in figure 3.4.

2

0ε/0

a/0

1

b/0

ε/0

Figure 3.6: The correct closure of the graph in figure 3.4 which has the language (anb)∗,
which is any sequence which ends with b.

3.2 Union

The union takes as input two or more graphs and produces a new graph. The
language of the resultant graph is the union of the languages of the input graphs.
More formally let A1, . . . ,An be n graphs. The language of the union graph is
given by {x | x ∈ Ai for some i = 1, . . . , n}. I’ll occasionally use the + sign to
denote the union, as in U = A1 +A2.

Since we let a graph have multiple start states and multiple accept states, the
union is easy to construct. A state in the union graph is a start state if it was a
start state in one of the original graphs. A state in the union graph is an accept
state if it was an accept state in one of the original graphs.

Consider the three graphs in figure 3.7 with languages {ab, aba, abaa, . . .}, {ba},
and {ac} respectively.

Notice in the union graph in figure 3.8 the only visual distinction from the individual
graphs is that the states are numbered consecutively from 0 to 8 indicating a
single graph with nine states instead of three individual graphs. The language of
the union graph is {ab, aba, abaa, . . .} ∪ {ba} ∪ {ac}.



3 BASIC OPERATIONS 20

0 1
a/0

2
b/0

a/0

(a)

0 1
b/0

2
a/0

(b)

0 1
a/0

2
c/0

(c)

Figure 3.7: Three acceptors with languages {ab, aba, abaa, . . .}, {ba}, and {ac} from top
to bottom, respectively.

0 1
a/0

2
b/0

3 4
b/0

5
a/0

6 7
a/0

8
c/0

a/0

Figure 3.8: The union of the three acceptors in figure 3.7 with language
{ab, aba, abaa, . . .} ∪ {ba} ∪ {ac}.



3 BASIC OPERATIONS 21

0 1
b/0

2
a/0

0

1a/0

2

b/0 3

c/0

c/0

Figure 3.9: The acceptor on left has language {ba} and the acceptor on the right has
language {ac, bc}.

0 1
b/0

2
a/0

3
ε/0

4a/0

5

b/0 6

c/0

c/0

Figure 3.10: The graph is the concatenation of the two graphs in figure 3.9 and has the
language {baac, babc}.

3.3 Concatenate

Like union, concatenate produces a new graph given two or more graphs as input.
The language of the concatenated graph is the set of strings which can be formed
by any concatenation of strings from the individual graph. Concatenate is not
commutative, the order of the input graphs matters. More formally the language
of the concatenated graph is given by {x1 . . .xn | x1 ∈ L(A1), . . . ,xn ∈ L(An)}.
Occasionally, I will denote concatenation by placing the graphs side-by-side. So
A1A2 represents the concatenation of A1 and A2.

The concatenated graph can be constructed from the original input graphs by
connecting the accept states of one graph to the start states of the next. Assume
we are concatenating A1, . . . ,An. The start states of the concatenated graph are
the start states of the first graph, A1. The accept states of the concatenated graph
are the accept states of the last graph, An. For any two graph Ai and Ai+1, we
connect each accept state of Ai to each start state of Ai+1 with an ε transition.

As an example, consider the two graphs in figure 3.9. The concatenated graph is
in figure 3.10 and has the language {baac, babc}.

Example 3.2. What is the identity graph for the concatenation function? The
identity in a binary operation is the value which when used in the operation leaves
the second input unchanged. In multiplication this would be 1 since c ∗ 1 = c for
any real value c.



3 BASIC OPERATIONS 22

0

(a) Identity

0

(b) Annihilator

Figure 3.11: The identity and the annihilator for the concatenate operation. The
language of the identity graph is the empty string {ε}. The language of the annihilator
graph is the empty set {}.

0 1
b/0

2a/0

3

c/0

0

2

a/0

1

c/0

Figure 3.12: The acceptor on the right has the language {ba, bc}, the acceptor on the
left has the language {a, c}.

What is the equivalent of the annihilator graph in the concatenation function?
The annihilator in a binary operation is the value such that the operation with the
annihilator always returns the annihilator. For multiplication 0 is the annihilator
since c ∗ 0 = 0 for any real value c.

The graph which accepts the empty string is the identity. The graph which does
not accept any strings is the annihilator. See the figure 3.11 for an example of
these two graphs.

The identity graph is a single node which is both a start and accept state. The
language of the identity graph is the empty string. The annihilator graph is a
single non accepting state. The language of the annihilator graph is the empty set.
Note the subtle distinction between the language that contains the empty string
and the language that is the empty set. The former can be written as {ε} whereas
the latter is {} (also commonly denoted by ∅). �

Example 3.3. Construct the concatenation of the two graphs in figure 3.12.

The concatenated graph is in figure 3.13.

�



3 BASIC OPERATIONS 23

0 1
b/0

2a/0

3

c/0

4
ε/0

5

ε/0

ε/0

ε/0

6

a/0

c/0

Figure 3.13: The concatenation of the two graphs in figure 3.12 has the language
{baa, bac, bca, bcc}.

Example 3.4. Suppose we have a list of graphs to concatenate A1, . . . ,An where
the i-th graph has si start states and ai accept states. How many new arcs will
the concatenated graph require?

For each consecutive pair of graphs Ai and Ai+1, we need to add ai∗si+1 connecting
arcs in the concatenated graph. So the total number of additional arcs is:

n−1∑
i=1

ai ∗ si+1.

�

3.4 Summary

We’ve seen three basic operations so far:

• Closure: The closed graph accepts any string in the input graph repeated
zero or more times. The closure of a graph A is denoted A∗.

• Union: The union graph accepts any string from any of the input graphs.
The union of two graphs A1 and A2 is denoted A1 +A2.

• Concatenate: The concatenated graph accepts any string which can be
formed by concatenating strings (respecting order) from the input graphs.
The concatenation of two graphs A1 and A2 is denoted A1A2.

Example 3.5. Assume you are given the following individual graphs Aa, Ab,
and Ac, which recognize a, b, and c respectively, as in figure 3.14. Using only
closure, union, and concatenate, construct the graph which recognizes any number
of repeats of the strings aa, bb, and cc. For example aabb and bbaacc are in the
language but b and ccaab are not.



3 BASIC OPERATIONS 24

0 1
a/0

0 1
b/0

0 1
c/0

Figure 3.14: The three individual automata with languages {a}, {b}, and {c} from left
to right, respectively.

0

1
ε/0

5

ε/0

9

ε/0

2a/0

6
b/0

10
c/0

3
ε/0

4

a/0

ε/0

7ε/0

8
b/0

ε/0

11
ε/0

12

c/0

ε/0

Figure 3.15: The even numbered repeats graph constructed from the individual token
graphs using the operations A = (AaAa +AbAb +AcAc)

∗.

First concatenate the individual graphs with themselves to get graphs which
recognize aa, bb, and cc. Then take the union of the three concatenated graphs
followed by the closure. The resulting graph is shown in figure 3.15. The equation
to compute the desired graph is A = (AaAa +AbAb +AcAc)

∗.

�


	Basic Operations
	Closure
	Union
	Concatenate
	Summary


